3.61 \(\int \frac{1}{x^3 (a+b \text{sech}^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=85 \[ -\frac{c^2 \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}+\frac{c^2 \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}+\frac{c^2 \sinh \left (2 \text{sech}^{-1}(c x)\right )}{2 b \left (a+b \text{sech}^{-1}(c x)\right )} \]

[Out]

-((c^2*Cosh[(2*a)/b]*CoshIntegral[(2*a)/b + 2*ArcSech[c*x]])/b^2) + (c^2*Sinh[2*ArcSech[c*x]])/(2*b*(a + b*Arc
Sech[c*x])) + (c^2*Sinh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSech[c*x]])/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.164571, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6285, 5448, 12, 3297, 3303, 3298, 3301} \[ -\frac{c^2 \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}+\frac{c^2 \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}+\frac{c^2 \sinh \left (2 \text{sech}^{-1}(c x)\right )}{2 b \left (a+b \text{sech}^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a + b*ArcSech[c*x])^2),x]

[Out]

-((c^2*Cosh[(2*a)/b]*CoshIntegral[(2*a)/b + 2*ArcSech[c*x]])/b^2) + (c^2*Sinh[2*ArcSech[c*x]])/(2*b*(a + b*Arc
Sech[c*x])) + (c^2*Sinh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSech[c*x]])/b^2

Rule 6285

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (a+b \text{sech}^{-1}(c x)\right )^2} \, dx &=-\left (c^2 \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh (x)}{(a+b x)^2} \, dx,x,\text{sech}^{-1}(c x)\right )\right )\\ &=-\left (c^2 \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{2 (a+b x)^2} \, dx,x,\text{sech}^{-1}(c x)\right )\right )\\ &=-\left (\frac{1}{2} c^2 \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{(a+b x)^2} \, dx,x,\text{sech}^{-1}(c x)\right )\right )\\ &=\frac{c^2 \sinh \left (2 \text{sech}^{-1}(c x)\right )}{2 b \left (a+b \text{sech}^{-1}(c x)\right )}-\frac{c^2 \operatorname{Subst}\left (\int \frac{\cosh (2 x)}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}\\ &=\frac{c^2 \sinh \left (2 \text{sech}^{-1}(c x)\right )}{2 b \left (a+b \text{sech}^{-1}(c x)\right )}-\frac{\left (c^2 \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}+\frac{\left (c^2 \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}\\ &=-\frac{c^2 \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}+\frac{c^2 \sinh \left (2 \text{sech}^{-1}(c x)\right )}{2 b \left (a+b \text{sech}^{-1}(c x)\right )}+\frac{c^2 \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \text{sech}^{-1}(c x)\right )}{b^2}\\ \end{align*}

Mathematica [A]  time = 0.335204, size = 92, normalized size = 1.08 \[ \frac{c^2 \left (-\cosh \left (\frac{2 a}{b}\right )\right ) \text{Chi}\left (2 \left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )\right )+c^2 \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (2 \left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )\right )+\frac{b \sqrt{\frac{1-c x}{c x+1}} (c x+1)}{x^2 \left (a+b \text{sech}^{-1}(c x)\right )}}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a + b*ArcSech[c*x])^2),x]

[Out]

((b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x))/(x^2*(a + b*ArcSech[c*x])) - c^2*Cosh[(2*a)/b]*CoshIntegral[2*(a/b +
ArcSech[c*x])] + c^2*Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSech[c*x])])/b^2

________________________________________________________________________________________

Maple [B]  time = 0.237, size = 186, normalized size = 2.2 \begin{align*}{c}^{2} \left ({\frac{1}{4\,{c}^{2}{x}^{2} \left ( a+b{\rm arcsech} \left (cx\right ) \right ) b} \left ( 2\,\sqrt{-{\frac{cx-1}{cx}}}\sqrt{{\frac{cx+1}{cx}}}cx+{c}^{2}{x}^{2}-2 \right ) }+{\frac{1}{2\,{b}^{2}}{{\rm e}^{2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,2\,{\frac{a}{b}}+2\,{\rm arcsech} \left (cx\right ) \right ) }-{\frac{1}{4\,{c}^{2}{x}^{2} \left ( a+b{\rm arcsech} \left (cx\right ) \right ) b} \left ({c}^{2}{x}^{2}-2-2\,\sqrt{-{\frac{cx-1}{cx}}}\sqrt{{\frac{cx+1}{cx}}}cx \right ) }+{\frac{1}{2\,{b}^{2}}{{\rm e}^{-2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-2\,{\rm arcsech} \left (cx\right )-2\,{\frac{a}{b}} \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(a+b*arcsech(c*x))^2,x)

[Out]

c^2*(1/4*(2*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*c*x+c^2*x^2-2)/c^2/x^2/(a+b*arcsech(c*x))/b+1/2/b^2*exp(2
*a/b)*Ei(1,2*a/b+2*arcsech(c*x))-1/4/b*(c^2*x^2-2-2*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*c*x)/c^2/x^2/(a+b
*arcsech(c*x))+1/2/b^2*exp(-2*a/b)*Ei(1,-2*arcsech(c*x)-2*a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{2} x^{3} +{\left (c^{2} x^{3} - x\right )} \sqrt{c x + 1} \sqrt{-c x + 1} - x}{{\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{3} \log \left (x\right ) +{\left ({\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} - b^{2} \log \left (c\right ) + a b\right )} x^{3} -{\left (b^{2} x^{3} \log \left (x\right ) +{\left (b^{2} \log \left (c\right ) - a b\right )} x^{3}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} +{\left (\sqrt{c x + 1} \sqrt{-c x + 1} b^{2} x^{3} -{\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{3}\right )} \log \left (\sqrt{c x + 1} \sqrt{-c x + 1} + 1\right )} + \int -\frac{2 \, c^{4} x^{4} - 4 \, c^{2} x^{2} - 2 \,{\left (c x + 1\right )}{\left (c x - 1\right )} +{\left (c^{4} x^{4} - 4 \, c^{2} x^{2} + 4\right )} \sqrt{c x + 1} \sqrt{-c x + 1} + 2}{{\left (b^{2} c^{4} x^{4} - 2 \, b^{2} c^{2} x^{2} + b^{2}\right )} x^{3} \log \left (x\right ) +{\left ({\left (b^{2} c^{4} \log \left (c\right ) - a b c^{4}\right )} x^{4} - 2 \,{\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} + b^{2} \log \left (c\right ) - a b\right )} x^{3} -{\left (b^{2} x^{3} \log \left (x\right ) +{\left (b^{2} \log \left (c\right ) - a b\right )} x^{3}\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} - 2 \,{\left ({\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{3} \log \left (x\right ) +{\left ({\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} - b^{2} \log \left (c\right ) + a b\right )} x^{3}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} +{\left ({\left (c x + 1\right )}{\left (c x - 1\right )} b^{2} x^{3} + 2 \,{\left (b^{2} c^{2} x^{2} - b^{2}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} x^{3} -{\left (b^{2} c^{4} x^{4} - 2 \, b^{2} c^{2} x^{2} + b^{2}\right )} x^{3}\right )} \log \left (\sqrt{c x + 1} \sqrt{-c x + 1} + 1\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsech(c*x))^2,x, algorithm="maxima")

[Out]

-(c^2*x^3 + (c^2*x^3 - x)*sqrt(c*x + 1)*sqrt(-c*x + 1) - x)/((b^2*c^2*x^2 - b^2)*x^3*log(x) + ((b^2*c^2*log(c)
 - a*b*c^2)*x^2 - b^2*log(c) + a*b)*x^3 - (b^2*x^3*log(x) + (b^2*log(c) - a*b)*x^3)*sqrt(c*x + 1)*sqrt(-c*x +
1) + (sqrt(c*x + 1)*sqrt(-c*x + 1)*b^2*x^3 - (b^2*c^2*x^2 - b^2)*x^3)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)) +
 integrate(-(2*c^4*x^4 - 4*c^2*x^2 - 2*(c*x + 1)*(c*x - 1) + (c^4*x^4 - 4*c^2*x^2 + 4)*sqrt(c*x + 1)*sqrt(-c*x
 + 1) + 2)/((b^2*c^4*x^4 - 2*b^2*c^2*x^2 + b^2)*x^3*log(x) + ((b^2*c^4*log(c) - a*b*c^4)*x^4 - 2*(b^2*c^2*log(
c) - a*b*c^2)*x^2 + b^2*log(c) - a*b)*x^3 - (b^2*x^3*log(x) + (b^2*log(c) - a*b)*x^3)*(c*x + 1)*(c*x - 1) - 2*
((b^2*c^2*x^2 - b^2)*x^3*log(x) + ((b^2*c^2*log(c) - a*b*c^2)*x^2 - b^2*log(c) + a*b)*x^3)*sqrt(c*x + 1)*sqrt(
-c*x + 1) + ((c*x + 1)*(c*x - 1)*b^2*x^3 + 2*(b^2*c^2*x^2 - b^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*x^3 - (b^2*c^4*x
^4 - 2*b^2*c^2*x^2 + b^2)*x^3)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b^{2} x^{3} \operatorname{arsech}\left (c x\right )^{2} + 2 \, a b x^{3} \operatorname{arsech}\left (c x\right ) + a^{2} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsech(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*x^3*arcsech(c*x)^2 + 2*a*b*x^3*arcsech(c*x) + a^2*x^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \left (a + b \operatorname{asech}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a+b*asech(c*x))**2,x)

[Out]

Integral(1/(x**3*(a + b*asech(c*x))**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arsech}\left (c x\right ) + a\right )}^{2} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsech(c*x))^2,x, algorithm="giac")

[Out]

integrate(1/((b*arcsech(c*x) + a)^2*x^3), x)